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Abstract. We have performed first-principles density functional calculations in conjunction
with a three-dimensional evaluation of the quantum scattering matrix for single-atom Si and Al
tunnel junctions. We predict the equilibrium conductance and resonance transmission properties.
Our results unambiguously show that when the atom is somewhat isolated from the electrodes,
the differential electric current should show resonances due to atomic valence orbitals. The
conductance resonance peaks may or may not retain a universal value, depending on whether or
not there is a partial overlap of the resonance transmissions. Our results also clearly demonstrate
the formation of a wire when the atomic junction becomes less and less isolated from the
electrodes.

1. Introduction

Using advanced nano-fabrication techniques, it is now possible to fabricate atomic-scale
devices whose electronic transport behaviour is completely quantum mechanical. A recent
such experiment was reported in reference [1] where electron transport through an isolated
Al nanoparticle was investigated. One of the findings was that by measuring the electrical
current through this nanometre-sized particle, it is possible to probe its internal discrete
electronic states. In the experimental set-up, the nanoparticle was sandwiched by two
electrodes and was isolated by tunnelling barriers. On varying a small bias voltageV

and measuring the currentI , peaks of dI/dV are obtained which indicate the electronic
states of the particle. The origin of this resonance behaviour is the matching up of
the scattering electron energy with that of the internal electronic states. The observed
resonance clustering has been explained by assuming that the steady-state occupation
configurations of the electrons are highly nonequilibrium [2]. The idea of isolating a
system and studying the resonance transmission has appeared in many different contexts,
for example in references [3]. In another important application field, exploiting the band-
gap differences of various compound semiconductors such as GaAs and AlGaAs, resonance
tunnelling devices have been fabricated and extensively investigated since the original work
of Esaki [4]. A tunnelling device may give rise to negative differential resistance due to a
quantum resonance, leading to useful electronic applications. The internal electronic states
of a nanoparticle come from complicated combinations of atomic and molecular orbitals
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of the atoms forming the particle. In the continuous limit, these states become the size-
quantized modes. The nanoparticle of reference [1] involves several thousand atoms; its
transport properties are thus quite complicated. On the other hand, the opposite limit of a
tunnel junction involving a very small number of atoms is interesting as well, and they are
easier to analyse using first-principlesab initio methods. The purpose of this work is to
report our investigations of the DC conductance of atomic junctions in the limiting case of
involving only a single atom, using a first-principles technique by combining the density
functional total energy method with the solution of the quantum scattering problem. While
this simulates only part of the physics which happens in a nanoparticle, it does capture
an essential ingredient of the quantum transport, namely transport through the internal
electronic states provided by the atom. We also note that even in the single-atom limit,
electrical current which flows through can be experimentally measured, as demonstrated in
reference [5].

The theoretical problem of quantum transport through a single atom has recently
attracted much attention. Mehrezet al have explained the observed features of the electric
conduction through an atomic junction on the basis of the behaviour of the density of
states [6]. Sautet and Joachim [8] have combined a tight-binding model with the quantum
scattering approach to investigate transport through atomic impurities. Yazdaniet al [5]
has investigated off-resonance transmission through a single Xe atom both experimentally
and numerically. Lang has studied the behaviour of densities of states of a Mg and a Na
atom in between two infinitely large planar electrodes [7] by varying the atom–electrode
distance, and confirmed [9] that it is possible to obtain negative differential resistance for
atomic contacts, because it could arise as the Fermi energies of two electrodes with narrow
densities of states pass each other as the external bias is varied. Finally, the authors have
studied the formation of atomic wires and predicted DC as well as AC conductances for
these systems [10].

In this work, we provide results on the equilibrium conductance of single-atom junctions
for a variety of Si and Al systems. Our results unambiguously show, for a system in the
form of an atomic tunnel junction, that when the Fermi energy of the electrodes becomes
equal to that of an atomic valence orbital, a resonance peak in the DC conductance is to be
expected. This has a manifestation in the differential current dI/dV , in which peaks occur
at appropriate voltages due to the quantum resonances mediated by the valence orbital.
Hence, by measuring the electrical current through the atomic junction, one can indeed
probe the atomic spectra of the single atom. This is consistent with the physical picture
of the nanoparticle experiment [1]. Since atomic orbitals have energy spacings in the
electron volt range, the quantum resonance will not be smeared out at a room temperature
[11]. Furthermore, we found that the usually degenerate atomic orbitals can be split by the
presence of electrodes, leading to nearby conductance or differential current peaks. Finally,
our results clearly demonstrate how the quasi-1D transport channels become established
when the tunnel barriers are reduced, i.e. the change from resonance-like curves to the
quantized curve, and thus we observe the crossover from the tunnelling through a single
atom to transport through a wire inside which there is an atomic junction. Our results were
obtained by combining the pseudopotential-based total energy method with the solution
of a 3D quantum scattering problem, and thus were entirely obtained from first-principles
techniques.

A particularly interesting question concerns the resonance peak conductance. For a
three-dimensional (3D) tunnel junction with symmetric barriers, it can be generally shown
[12] that the peak value of the conductance for an isolated singlet resonance is universally
2e2/h. On the other hand, reference [7] reported 68% of this value for resonance tunnelling
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through the 3s singlet of the Na atom. One reason for this difference could be that the
equilibrium Fermi level is close to but not exactly at the 3s state, leading to a slight off-
resonance. Nevertheless, it is very interesting to carefully examine the resonances due to
atomic levels, especially for cases where there are levels near the equilibrium Fermi energy
which are close to each other, and thus the resonances have substantial overlap. For this
case the question then arises of whether the peak conductance will retain the universal
value. By means of a detailed analysis of Si tunnel junctions, we shall address this question
clearly.

In the next section we present the model, the method and the results; the last section is
devoted to a discussion and summary.

2. Results

We propose an atomic tunnelling structure as shown schematically in the inset of figure 3—
see later. The essential part of the structure consists of two metallic electrodes—they are
quantum wires with square-shaped cross-sections, sandwiching a single atom in between.
The whole system could in principle be fabricated on top of an insulating substrate by micro-
fabricating two electrodes and placing an atom in between using the atomic manipulation
ability of STM. To fix the distance between the atom and the electrode,d, vacuum barriers
can be established on either side of the atom; thus a double-barrier atomic tunnelling junction
is established. We note that there are other methods of establishing barriers, such as using
oxidation layers as in the experiment of reference [1], or using appropriate spacer atoms
[9]. Here in our model we will simply use vacuum. We emphasize again that although we
have concentrated on junctions operating on a single atom, the analysis can certainly be
extended to clusters, molecules, or other groups of atoms.

To capture the atomic degrees of freedom, we have combined theab initio pseudo-
potential total energy method with a three-dimensional (3D) quantum scattering evaluation
of the transmission probabilities [10]. Our numerical procedure consists of essentially two
steps. First, we solve for the ground-state properties of the atom and the two electrodes
by minimizing the Kohn–Sham total energy functional using a plane-wave basis set. The
minimization is achieved using the standard conjugate-gradient technique detailed in the
review article [13]. This equilibrium analysis produces the self-consistent effective potential
Veff (r) ≡ δU/δρ(r) which is ‘seen’ by all of the electrons including those inside the
electrodes. HereU [ρ] is the total self-consistent potential energy whileρ the electron
density calculated from the electron wavefunctions. Second, we evaluate the scattering
matrix of a particle traversing the system defined byVeff , by solving a 3D scattering
problem using an extended transfer-matrix technique. To do this, we divided the entire
system (electrodes plus the atomic junction) into many parallel slices along the transport
direction (thez-direction); when the division is fine enough, the potential within each
slice can be safely approximated as being independent ofz. The Schr̈odinger equation is
solved within each slice and the wavefunctions and their derivatives matched at the slice
boundaries. In this way a transfer matrix can, in principle, be established which connects
the outgoing waves to the incoming waves [14]. The difficulty lies in how to control
the numerical stability of the procedure, because there are many evanescent modes which
produce exponentially diverging factors. We have solved this problem by finding a method
which rearranges the transfer matrix such that these exponentially diverging factors do not
appear. This is in a similar spirit to the so-called ‘scattering matrix’ approach [15], but
due to some differences in the details of the implementation, our method can be applied in
3D and can compute scattering wavefunctions in addition to the transmission coefficients,



2666 J-L Mozos et al

as these are needed [16]. Finally, after obtaining the scattering matrix, we compute the
conductance from the Landauer formula [17].

We have focused on junctions made of Si and Al atoms and used the pseudopotentials of
references [18, 19] for the core, and the parametrization of reference [20] for the exchange–
correlation term. Resonance tunnelling in these systems has not been studied before,
although these are the most studied atoms in many other problems. In addition, both
atoms have open valence shells and thus we expect the Fermi level of the whole system to
be near certain atomic orbitals. The electrodes are modelled by the jellium model where the
positive charges are uniformly distributed within the electrodes’ volume while electrons are
explicitly treated using their wavefunctions. For Si, a jellium has a cross-sectional area of
7.25× 7.25 au2, a lengthL = 30.78 au, and its charge is specified by the usual parameter
rs ≈ 2.0 au, mimicking metallic leads. The supercell volume used in our plane-wave
ab initio calculations is 21.77× 21.77× 2(L+ d) au3. For the Al junctions, the lead has a
cross-sectional area of 8.79×8.79 au2, a lengthL = 23.57 au and a charge density specified
by rs ≈ 2.07 au. The supercell size for an Al junction is 16.67× 16.67× 2(L + d) au3.
The atomic junction set-up with square-shaped leads has a symmetry of space group D4h.
We have used an upper energy cut-off of 8 Ryd [21].

Figure 1. The effective potentialVeff for a single-atom Si junction. The atom–lead distance is
fixed atd = 6.9 au. The vacuum barriers are clearly seen.

For a single adatom on top of a high-density jellium substrate, previous calculations
showed [23] that the equilibrium jellium–atom bond length is 2.3 au for Si and 2.6 au for Al
[22]. Hence for values ofd greater than these values, a vacuum barrier may be established.
Figure 1 showsVeff for a Si junction withd = 6.9 au.Veff in the 3D leads is essentially a
potential well with a depth∼−0.50 au below the Fermi level of the system. FromVeff it
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is clear that the atom is quite isolated from the leads by the vacuum barriers. On reducing
d to 3.45 and 4.6 au, a lower vacuum barrier is obtained as expected. Similar behaviour
is found for Al junctions. In figure 1, the sharp peak at the atomic position reflects the
repulsive atomic core, and surrounding the core there is the usual attractive part of the
atomic potential.

Figure 2. The conductanceG(E) as a function of the incoming electron energyE for Si
junctions. Dashed line: ford = 2.3 au, which is the equilibrium atom–lead distance; dotted
line: for d = 3.45 au; long-dashed line: ford = 4.6 au; solid line: ford = 6.9 au. The thin
vertical line indicates the calculated equilibrium Fermi level of the system. Inset: resolving the
3s resonance peak for thed = 6.9 au case.

Figures 2 and 3 show the conductanceG for a number of Si and Al junctions which
differ in their jellium–atom junction distancesd. Whend takes the value of the equilibrium
jellium–atom bond length,G(E) shows the expected ‘quantized’ conductance for quasi-1D
quantum wires. The quantization plateau is not perfect, because the single-atom junction is
too short for establishing perfect quasi-1D transport channels [10]. In addition, the absence
of theG = 2× 2e2/h plateau reflects the D4h spatial symmetry of the quantum wire. A
striking result, however, is the apparent resonance transmission when the atom is isolated
inside a junction by the barriers. For both Si and Al systems, the largerd, the sharper the
resonances. This is because a largerd corresponds to a more isolated atom. The resonance
peaks must arise from the atomic orbitals since the junction is operating on the electronic
structure of the single atom. For a Si atom, the valence configuration is 3s23p2. Thus
the equilibrium ‘Fermi’ energy for an isolated atom should be located at the 3p atomic
level. For all of the Si junctions, our calculatedEF ≈ −0.10 au, which is very close to
the higher-energy peak position of figure 2. This allows us to identify the resonance peak
near−0.09 to−0.10 au as due to the 3p atomic orbital. For the largestd that we studied,
i.e. d = 6.9 au, the sharp 3p resonance is split into two peaks that are close together as
shown in figure 2. We can understand this splitting when we recall that the 3p state is triply
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Figure 3. The conductanceG for Al junctions. Dashed line: ford = 2.6 au; dotted line: for
d = 3.9 au; long-dashed line: ford = 5.2 au; solid line: ford = 6.5 au. The thin vertical line
indicates the calculated equilibrium Fermi level of the system. Inset: a schematic plot of the
atomic junction: an atom is sandwiched between two metallic wires.

degenerate, and its rotational symmetry is broken by the presence of the square-shaped leads
which lie along thez-direction. Hence for the single 3pz state, the resonance is marked
by G(E3pz ) ≈ 1 in units of 2e2/h. On the other hand, the D4h space group respects the
fourfold rotational symmetry in thex–y direction, and thus the degenerate 3px,y states give
G(E3pxy ) ≈ 2. When the lead–atom distanced is smaller, e.g.d = 3.45 au or 4.6 au, the
atom is not as isolated. For these cases, the resonance width is larger which smears out the
3p splits. As a result, the three states of the 3p atomic orbital give aG(E3p) = 3× (2e2/h)

resonance.
Our results of thed = 6.9 au Si junction just presented can answer the question

concerning the value of the resonance conductance peak. First, the 3pz peak is slightly higher
than 1 while the 3pxy peak is slightly higher than 2, in terms of the conductance quanta.
This is due to the partial overlap of these states, as is clearly indicated in figure 2. Hence
when there are close resonance states, a partial overlap of DOS can lead to conductance
peaks slightly larger than the universal values. Second, while the peak value is larger, the
conductance at the Fermi level is sensitive to its position. Figure 2 shows thatG(EF ) is
very slightly smaller than one quantum ford = 6.9 au, and is larger than one quantum for
all of the other cases due to the smearing of the 3p splittings. For all of the Al junctions
investigated,G(EF ) is larger than one quantum, as shown in figure 3.

After understanding the 3p resonance peak, it is clear that the lower-energy peak of
figure 2 must result from the 3s atomic state. Indeed, since 3s is a singlet and is far away
from other states, we have thatG(E3s) universally equals 1× (2e2/h) independently of
the atom–lead distanced as long as a tunnel junction is meaningfully established. For
d = 6.9 au, the 3s peak is extremely sharp; we reproduce it in the inset of figure 2. This
result confirms the general result of reference [12] as discussed in the introduction. A
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crucial numerical test of these results is based on the distance between the peak positions.
For a single Si atom, LDA calculation [24] gives the energy level spacing between the
3s and 3p states as 0.245 au. Our conductance calculation, as shown in figure 2, gives
a 3s–3p resonance distance in almost perfect agreement with the LDA spectra, with only
small differences due to the level splitting and the presence of the leads. Hence it is
unambiguous that the transport in a single-atom junction is mediated by the atomic levels.
For Al junctions, as shown in figure 3, all of the results give a physical picture which is
consistent with that of the Si system, including the quantitative value of the 3s–3p resonance
peak distance. The 3pz split has not occurred in Al junctions because thed-values were not
large enough, although we can already observe an indication of it as thed = 6.5 au curve
shows a slight shoulder near the 3p energy (see figure 3). For different values ofd, there is
a small but noticeable shift of the relative peak positions (see figures 2 and 3). This is due
to the coupling of the atom to the leads, and can be understood on the basis of previous
model calculations [25]. Finally, figures 2 and 3 show the formation of a transmissive
quantum point contact: on reducingd to the equilibrium bond length between the atom and
the leads, the resonance transmission crosses over to the usual quantized conductance with
a quasi-1D nature.

Figure 4. The differential current dI/dV as a function of biasV , for thed = 6.9 au Si junction.
The double peak reflects the resonance transmission through the 3p states.

Our results for the conductance were presented using the scattering electron energy as
the variable. In an experimental measurement, one varies a small bias voltage across the
electrodes. The differential current dI/dV shows peaks at certain voltages when a resonance
occurs [1]. The equilibrium conductance curves can be converted to obtain an estimate of
dI/dV in the standard fashion [26] by integrating the transmission function together with the
appropriate Fermi functions of the two electrodes. Figure 4 shows the differential current
as a function of the voltage for the Si diode withd = 6.9 au at room temperature. The
double peak of the differential current reflects the 3p quantum resonances discussed above.
We caution that the estimated dI/dV is obtained from equilibrium calculations and thus is
only accurate in the small-bias limit. For larger bias, other effects may set in, such as those
due to polarization of the charges. The approximate curve of figure 4 does not contain these
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physical effects, which could be important.
The results presented in the last section were obtained from first-principlesab initio

calculations. Beside the resonance conductance peak values which we compared with the
discussion of reference [12], certain other features can also be understood analytically. First,
using the discussion of reference [12] and Fermi’s golden rule, it is not difficult to obtain
the resonance width as

0 = 2π
∑
j

|Mj |2δ(Er − Ej) = h̄
∑
j

wj

wherewj is the rate of tunnelling from the atomic resonance levelEr to the lead level
Ej , andMj is the corresponding tunnelling matrix element connectingEr to Ej . Since
the tunnelling rate decreases exponentially with the barrier size, we expect the resonance
widths to do the same, which is clearly seen in our numerical results. Second, we can
understand why the 3pz resonance peak width is wider than the 3pxy peak. Using a first-
order approximation for the tunnelling matrix [27],

Mj =
∫
χ∗j Vleadφr d3r

whereχj is the lead state,φr is the atomic state andVlead is the potential due to the lead.
By approximating the lead wavefunctions with finite square-well wavefunctions, andVlead

as a potential well, we find0pz/ 0pxy = 6.2 for d = 6.9 au. This agrees well with the value
of 6.0 obtained from ourab initio calculation. We thus conclude that the 3pz resonance
peak width is wider than that of the 3px,y peak, because the overlap of the 3pz state with
the lead wavefunctions is much larger than the corresponding overlap for the 3pxy states.

3. Summary

In summary, we have numerically investigated atomic-scale double-barrier junctions and
focused on the equilibrium conductance of these systems. The quantum resonance
transmission in this system is through atomic orbitals, and thus the conductances obtained
characterize the conduction through a single atom and reveal the valence atomic spectra.
The estimated differential current does indeed show peaks, which are the result of resonant
transmission through the atomic orbitals. In this work we have focused on two important
systems, Si and Al. While their electronic and mechanical properties have been extensively
investigated in the literature, here we have, for the first time, studied resonance tunnelling
through single-atom junctions made of these atoms. Due to the open valence shell of these
atoms, the equilibrium Fermi energy of the system is near some of the atomic orbitals, and
thus resonance transmission can be established reasonably easily. The experimental studies
of quantum transport through a single atom have been performed using a STM tip, where
the single atom is attached, approaching a substrate [5]. In this work we have investigated
the tunnelling regime and experimentally this regime can be realized by several ways. A
tunnel junction maybe established in the tip–substrate arrangement if ‘spacer’ atoms are
used to separate the STM tip from the absorbed atom through which tunnelling occurs, as
suggested by references [9, 3]. The condition for the ‘spacers’ is that they do not have high
densities of states at the equilibrium Fermi energy of the entire junction, thereby providing
the necessary tunnel barriers [9]. Another method is to fabricate two electrodes on top of
an insulating substrate, as discussed in the introduction, and then use a STM tip to lower
an atom to a position in between. Vacuum barriers can thus be established to form a tunnel
junction. Finally, for larger junctions, one can simply isolate an atomic-scale particle using
insulating materials as shown in the experiment of reference [1]. We emphasize that while
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we have concentrated on the model junctions operating on a single atom, for more atoms
the physics should still be similar—namely, the differential current should still reflect the
internal electronic structure of the system [1]. For more atoms, the resonances would be
through the ‘molecular’ orbitals rather than the atomic orbitals identified here.
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